Bisphenol A and ovarian steroidogenesis

Bisphenol A impairs ovarian steroidogenesis and estrogen action in animal models and human epidemiologic data, although there is much variability in the magnitude and directionality of the effects observed.

Like Comment

Volume 106, Issue 4, Pages 857-863


Michael S. Bloom, Ph.D., Evelyn Mok-Lin, M.D., Victor Y. Fujimoto, M.D.


Bisphenol A is widely used as a component in polycarbonate plastics for food and beverage packaging, epoxy linings for canned foods, and dental sealants, among other applications. Experimental literature demonstrates BPA's affinity for estrogen receptors and downstream effects on estrogen-responsive genes. Experimental literature suggests BPA reduces endogenous estrogen synthesis, likely by antagonizing ovarian enzyme activities involved in sex-steroid hormone synthesis. More specifically, evidence indicates BPA-mediated disruption of STAR, CYP450scc, and HSD-3β in theca cells and CYP450 aromatase activity in granulosa cells. Yet the results of the few human studies reported to date are equivocal. It also remains in question the extent to which BPA penetrates developing ovarian follicles. Uncertainty as to the relevance of experimental BPA doses and administration routes for common human exposure levels limits extrapolation of experimental results. To more definitively address the potential risk of BPA on human ovarian steroidogenesis, additional experimental studies using biologically active BPA doses likely to reflect those within the ovarian follicle will be necessary, as will additional prospective investigations in human populations with the use of standardized assay methodology.

Read the full text here.

Fertility and Sterility

Editorial Office, American Society for Reproductive Medicine

Fertility and Sterility® is an international journal for obstetricians, gynecologists, reproductive endocrinologists, urologists, basic scientists and others who treat and investigate problems of infertility and human reproductive disorders.